Skip to main content
Log in

On the evolutionary origin of Neotropical cavefish Ancistrus cryptophthalmus (Siluriformes, Loricariidae) based on the mitogenome and genetic structure of cave and surface populations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The evolutionary process of adaptation to the cave environment leads to extreme genetic, morphological, and physiological modifications commonly known as stygomorphism. The cave-dwelling armored catfish Ancistrus cryptophthalmus is a good model to understand the evolutionary processes of stygomorphism in the Neotropics as its ecology and morphology have been studied in detail. Interestingly, it has been found a non-stygomorphic epigean population named Ancistrus sp. This population is morphologically distinct to the hypogean population of A. cryptophthalmus as they present better-developed ocular structures and intense pigmentation. Here we used Illumina sequencing technology to produce partial genome sequences for specimens of Ancistrus sp. and A. cryptophthalmus; we also genotyped molecular markers from individuals of both species. Based on the high level of mitogenome similarity and metapopulation connectivity between the surface and cave populations, we suggest that the evolution of stygomorphisms observed in A. cryptophthalmus may be the result of morphologic modification, by natural selection, of Ancistrus sp. surface population to colonize the harsh cave environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal, A., 2008. Phototactic behavior in cave populations of Nemacheilus evezardi with special reference to light intensity and feeding schedules. Biological Rhythm Research 39: 439–447.

    Article  Google Scholar 

  • Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armbruster, J. W., 2004. Phylogenetic relationships of the suckermouth armoured catfishes (Loricariidae) with emphasis on the Hypostominae and the Ancistrinae. Zoological Journal of the Linnean Society 141: 1–80.

    Article  Google Scholar 

  • Auler, A. & A. R. Farrant, 1996. A brief introduction to karst and caves in Brazil. Proceedings of the University of Bristol Speleological Society 20: 187–200.

    Google Scholar 

  • Auler, A. S., Rubbioli, E., & Brandi, R., 2001. As grandes cavernas do Brasil. Grupo Bambuí de Pesquisas Espeleológicas.

  • Avise, J. C. & R. K. Selander, 1972. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 26: 1–19.

    Article  PubMed  Google Scholar 

  • Barr, T. C., 1968. Cave ecology and the evolution of troglobites. In Hecht, H. & W. C. Steere (eds), Evolutionary Biology. Plenum Press, New York: 35–102.

    Chapter  Google Scholar 

  • Barr, T. C. & J. R. Holsinger, 1985. Speciation in cave faunas. Annual Review of Ecology and Systematics 16: 313–337.

    Article  Google Scholar 

  • Bastos, V. A. A., R. L. Ferreira, D. C. Carvalho, M. L. Pugedo & L. M. A. Pinto, 2013. The cave environment influencing the lipid profile and hepatic lipogenesis of the fish Ancistrus cryptophthalmus Reis, 1987 (Siluriformes: Loricariidae). International Journal of Speleology 42: 15–23.

    Article  Google Scholar 

  • Bernt, M., A. Donath, F. Juhling, F. Externbrink, C. Florentz, G. Fritzsch & J. Putz, 2013. MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69: 313–319.

    Article  PubMed  Google Scholar 

  • Bichuette, M. E. & E. Trajano, 2006. Morphology and distribution of the cave knifefish Eigenmannia vicentespelaea Triques, 1996 (Gymnotiformes: Sternopygidae) from Central Brazil, with an expanded diagnosis and comments on subterranean evolution. Neotropical Ichthyology 4: 99–105.

    Article  Google Scholar 

  • Bichuette, M. E. & E. Trajano, 2017. Biology and behavior of Eigenmannia vicentespelaea, a troglobitic electric fish from Brazil (Teleostei: Gymnotiformes: Sternopygidae): a comparison to the epigean species, E. trilineata, and the consequences of cave life. Tropical Zoology 30: 68–82.

    Article  Google Scholar 

  • Bradic, M., P. Beerli, F. J. García-de León, S. Esquivel-Bobadilla & R. L. Borowsky, 2012. Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evolutionary Biology 12: 9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carver, T., S. R. Harris, M. Berriman, J. Parkhill & J. A. McQuillan, 2012. Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28: 464–469.

    Article  CAS  PubMed  Google Scholar 

  • Casane, D. & S. Rétaux, 2016. Evolutionary genetics of the cavefish Astyanax mexicanus. Advances in Genetics 95: 117–159.

    Article  CAS  PubMed  Google Scholar 

  • Chevreux, B., T. Wetter & S. Suhai, 1999. Genome sequence assembly using trace signals and additional sequence information. German Conference on Bioinformatics 99: 45–56.

    Google Scholar 

  • Christiansen, K., 2012. Morphological adaptations. In. In White, W. B. & D. C. Culver (eds), Encyclopedia of Caves, 2nd ed. Elsevier, Amsterdam: 517–528.

    Chapter  Google Scholar 

  • Coghill, L. M., C. D. Hulsey, J. Chaves-Campos, F. J. G. de Leon & S. G. Johnson, 2014. Next generation phylogeography of cave and surface Astyanax mexicanus. Molecular Phylogenetics and Evolution 79: 368–374.

    Article  PubMed  Google Scholar 

  • Corander, J. & P. Marttinen, 2006. Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology 15: 2833–2843.

    Article  PubMed  Google Scholar 

  • Corander, J., P. Waldmann & M. J. Sillanpää, 2003. Bayesian analysis of genetic differentiation between populations. Genetics 163: 367–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corander, J., P. Marttinen, J. Sirén & J. Tang, 2008. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinformatics 9: 539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cronin, M. A., W. J. Spearman, R. L. Wilmot, J. C. Patton & J. W. Bickham, 1993. Mitochondrial DNA variation in chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) detected by restriction enzyme analysis of polymerase chain reaction (PCR) products. Canadian Journal of Fisheries and Aquatic Sciences 50: 708–715.

    Article  CAS  Google Scholar 

  • Culver, D. C. & T. Pipan, 2009. The Biology of Caves and Other Subterranean Habitats. Oxford University Press, Oxford.

    Google Scholar 

  • Culver, D. C. & H. Wilkens, 2000. Critical review of the relevant theories of the evolution of subterranean animals. In Wilkens, H., D. C. Culver & W. F. Humphreys (eds), Ecosystems of the World. Elsevier, Amsterdam: 381–398.

    Google Scholar 

  • Desutter-Grandcolas, L. & P. Grandcolas, 1996. The evolution toward troglobitic life: a phylogenetic reappraisal of climatic relict and local habitat shift hypotheses. Mémoires de Biospéologie 23: 57–63.

    Google Scholar 

  • Dowling, T. E., D. P. Martasian & W. R. Jeffery, 2002. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Molecular Biology and Evolution 19: 446–455.

    Article  CAS  PubMed  Google Scholar 

  • Endler, J. A., 1977. Geographic Variation, Speciation, and Clines, Vol. 10. Princeton University Press, Princeton.

    Google Scholar 

  • Espinasa, L. & R. B. Borowsky, 2001. Origins and relationship of cave populations of the blind Mexican tetra, Astyanax fasciatus, in the Sierra de El Abra. Environmental Biology of Fishes 62: 233–237.

    Article  Google Scholar 

  • Excoffier, L. & H. E. Lischer, 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Eecology Resources 10: 564–567.

    Article  Google Scholar 

  • Franz-Odendaal, T. A. & B. K. Hall, 2006. Modularity and sense organs in the blind cavefish, Astyanax mexicanus. Evolution & Development 8: 94–100.

    Article  CAS  Google Scholar 

  • Fumey, J., H. Hinaux, C. Noirot, C. Thermes, S. Rétaux & D. Casane, 2018. Evidence for late Pleistocene origin of Astyanax mexicanus cavefish. BMC Evolutionary Biology 18: 43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gross, J. B., A. K. Powers, E. M. Davis & S. A. Kaplan, 2016. A pleiotropic interaction between vision loss and hypermelanism in Astyanax mexicanus cave x surface hybrids. BMC Evolutionary Biology 16: 145.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hahn, C., L. Bachmann & B. Chevreux, 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research 41: e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth, F. G., 1973. High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. The American Naturalist 142: S65–S77.

    Article  Google Scholar 

  • Jeffery, W. R., 2001. Cavefish as a model system in evolutionary developmental biology. Developmental Biology 231: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, W. R., 2005. Adaptive evolution of eye degeneration in the Mexican blind cavefish. Journal of Heredity 96: 185–196.

    Article  CAS  PubMed  Google Scholar 

  • Jeffery, W. R., 2009. Evolution and development in the cavefish Astyanax. Current Topics in Developmental Biology 86: 191–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jernigan, R. W., D. C. Culver & D. W. Fong, 1994. The dual role of selection and evolutionary history as reflected in genetic correlations. Evolution 48: 587–596.

    Article  PubMed  Google Scholar 

  • Juan, C., M. T. Guzik, D. Jaume & S. J. Cooper, 2010. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Molecular Ecology 19: 3865–3880.

    Article  PubMed  Google Scholar 

  • Keene, A., M. Yoshizawa & S. E. Mcgaugh, 2015. Biology and Evolution of the Mexican Cavefish. Academic Press, Diego.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Klink, C. A. & R. B. Machado, 2005. Conservation of the Brazilian cerrado. Conservation Biology 19: 707–713.

    Article  Google Scholar 

  • Kosswig, C., 1960. Zur Phylogenese sogenannter Anpassungsmerkmale bei Höhlentieren. Internationale Revue der gesamten Hydrobiologie und Hydrographie 45: 493–512.

    Google Scholar 

  • Kruckenhauser, L., E. Haring, R. Seemann & H. Sattmann, 2011. Genetic differentiation between cave and surface-dwelling populations of Garra barreimiae (Cyprinidae) in Oman. BMC Evolutionary Biology 11: 172.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh, J. W. & D. Bryant, 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116.

    Article  Google Scholar 

  • Leys, R., S. J. Cooper, U. Strecker & H. Wilkens, 2005. Regressive evolution of an eye pigment gene in independently evolved eyeless subterranean diving beetles. Biology Letters 1: 496–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado, P. & J. Rozas, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, T. M. & S. R. Eddy, 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Rresearch 25: 955–964.

    Article  CAS  Google Scholar 

  • Lujan, N. K. & C. Chamon, 2008. Two new species of Loricariidae (Teleostei: Siluriformes) from main channels of the upper and middle Amazon Basin, with discussion of deep water specialization in loricariids. Ichthyological Exploration of Freshwaters 19: 271–282.

    Google Scholar 

  • Lujan, N. K., J. W. Armbruster, N. R. Lovejoy & H. López-Fernández, 2015. Multilocus molecular phylogeny of the suckermouth armored catfishes (Siluriformes: Loricariidae) with a focus on subfamily Hypostominae. Molecular Phylogenetics and Evolution 82: 269–288.

    Article  PubMed  Google Scholar 

  • McGaugh, S. E., J. B. Gross, B. Aken, M. Blin, R. Borowsky, D. Chalopin & P. Minx, 2014. The cavefish genome reveals candidate genes for eye loss. Nature Communications 5: 5307.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, A., T. D. Kocher, P. Basasibwaki & A. C. Wilson, 1990. Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347: 550.

    Article  CAS  PubMed  Google Scholar 

  • Milne, I., G. Stephen, M. Bayer, P. J. Cock, L. Pritchard, L. Cardle & D. Marshall, 2012. Using Tablet for visual exploration of second-generation sequencing data. Briefings in Bioinformatics 14: 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, R. W., W. H. Russell & W. R. Elliott, 1977. Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution. Texas Tech Press, Lubbock.

    Google Scholar 

  • Montoya-Burgos, J. I., S. Muller & C. Weber, 1997. Phylogenetic relationships between Hypostominae and Ancistrinae. Revue Ssuisse de Zoologie 104: 185–198.

    Article  Google Scholar 

  • Needleman, S. B. & C. D. Wunsch, 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 443–453.

    Article  CAS  PubMed  Google Scholar 

  • Niemiller, M. L. & Soares, D., 2015. Cave environments. In Extremophile fishes: Ecology, evolution, and physiology of teleosts in extreme environments. Springer, Heidelberg: 161–191.

  • Niemiller, M. L., B. M. Fitzpatrick & B. T. Miller, 2008. Recent divergence with gene flow in Tennessee cave salamanders (Plethodontidae: Gyrinophilus) inferred from gene genealogies. Molecular Ecology 17: 2258–2275.

    Article  CAS  PubMed  Google Scholar 

  • Niemiller, M. L., B. M. Fitzpatrick, P. Shah, L. Schmitz & T. J. Near, 2013. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution: International Journal of Organic Evolution 67: 732–748.

    Article  CAS  Google Scholar 

  • Parzefall, J., 2001. A review of morphological and behavioural changes in the cave molly, Poecilia mexicana, from Tabasco, Mexico. In Romero, A. (ed.), The Biology of Hypogean Fishes. Springer, Dordrecht: 263–275.

    Chapter  Google Scholar 

  • Pati, A. K., 2001. Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. In Romero, A. (ed.), The Biology of Hypogean Fishes. Springer, Dordrecht: 119–129.

    Chapter  Google Scholar 

  • Pati, A. K., 2007. Circadian rhythms in hypogean fish: with special reference to the cave loach, Nemacheilus evezardi. In Sébert, P., D. W. Onyango & B. G. Kapoor (eds), Fish Life in Special Environments. Science Publishers, New Hampshire: 83–130.

    Google Scholar 

  • Pati, A. K. & A. Agrawal, 2002. Studies on the behavioural ecology and physiology of a hypogean loach, Nemacheilus evezardi, from the Kotumsar Cave, India. Current Science-Bangalore 83: 1112–1116.

    Google Scholar 

  • Peck, S. B. & T. L. Finston, 1993. Galapagos islands troglobites: the questions of tropical troglobites, parapatric distributions with eyed-sister-species, and their origin by parapatric speciation. Mémoires de Biospéologie 20: 19–37.

    Google Scholar 

  • Plath, M., J. S. Hauswaldt, K. Moll, M. Tobler, F. J. García de León, I. Schlupp & R. Tiedemann, 2007a. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide. Molecular Ecology 16: 967–976.

    Article  CAS  PubMed  Google Scholar 

  • Plath, M., M. Tobler, R. Riesch, F. J. G. De León, O. Giere & I. Schlupp, 2007b. Survival in an extreme habitat: the roles of behaviour and energy limitation. Naturwissenschaften 94: 991–996.

    Article  CAS  PubMed  Google Scholar 

  • Plath, M., B. Hermann, C. Schröder, R. Riesch, M. Tobler, F. J. G. de León, I. Schlupp & R. Tiedemann, 2010. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event. BMC Evolutionary Biology 10: 256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porter, M. L., 2007. Subterranean biogeography: what have we learned from molecular techniques. Journal of Cave and Karst Studies 69: 179–186.

    Google Scholar 

  • Porter, M. L., K. Dittmar & M. Pérez-Losada, 2007. How long does evolution of the troglomorphic form take? Estimating divergence times in Astyanax mexicanus. Acta Carsologica 36: 173–182.

    Article  Google Scholar 

  • Pouilly, M. & G. Miranda, 2003. Morphology and reproduction of the cavefish Trichomycterus chaberti and the related epigean Trichomycterus cf. barbouri. Journal of Fish Biology 63: 490–505.

    Article  Google Scholar 

  • Poulson, T. L., 1963. Cave adaptation in amblyopsid fishes. American Midland Naturalist 70(2): 257–290.

    Article  Google Scholar 

  • Poulson, T. L., 2001. Morphological and Physiological Correlates of Evolutionary Reduction of Metabolic Rate Among Amblyopsid Cave Fishes. The Biology of Hypogean Fishes. Springer, Dordrecht: 239–249.

    Google Scholar 

  • Prosdocimi, F., D. C. Carvalho, R. N. de Almeida & L. B. Beheregaray, 2012. The complete mitochondrial genome of two recently derived species of the fish genus Nannoperca (Perciformes, Percichthyidae). Molecular Biology Reports 39: 2767–2772.

    Article  CAS  PubMed  Google Scholar 

  • Protas, M. & W. R. Jeffery, 2012. Evolution and development in cave animals: from fish to crustaceans. Wiley Interdisciplinary Reviews: Developmental Biology 1: 823–845.

    Article  PubMed  Google Scholar 

  • Protas, M. E., C. Hersey, D. Kochanek, Y. Zhou, H. Wilkens, W. R. Jeffery, L. I. Zon, R. Borowsky & C. J. Tabin, 2006. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics 38: 107–111.

    Article  CAS  PubMed  Google Scholar 

  • Protas, M., M. Conrad, J. B. Gross, C. Tabin & R. Borowsky, 2007. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Current biology 17: 452–454.

    Article  CAS  PubMed  Google Scholar 

  • Proudlove, G. S., 2010. Biodiversity and distribution of the subterranean fishes of the world. In Trajano, E., M. E. Bichuette & B. G. Kapoor (eds), The Biology of Subterranean Fishes. Science Publishers, Enfield: 41–63.

    Chapter  Google Scholar 

  • Reis, R. E., 1987. Ancistrus cryptophthalmus sp. n. a blind mailed catfish from the Tocantins river basin, Brazil (Pisces, Siluriformes, Loricariidae). Revue Française d’aquariologie 14: 81–84.

    Google Scholar 

  • Reis, R. E., E. Trajano & E. Hingst-Zaher, 2006. Shape variation in surface and cave populations of the armoured catfishes Ancistrus (Siluriformes: Loricariidae) from the São Domingos karst area, upper Tocantins River, Brazil. Journal of Fish Biology 68: 414–429.

    Article  Google Scholar 

  • Reznick, D. N. & C. K. Ghalambor, 2001. The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112: 183–198.

    Article  PubMed  Google Scholar 

  • Riesch, R., M. Plath & I. Schlupp, 2010. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae). Ecology 91: 1494–1505.

    Article  PubMed  Google Scholar 

  • Rivera, M. A. J., F. G. Howarth, S. Taiti & G. K. Roderick, 2002. Evolution in Hawaiian cave-adapted isopods (Oniscidea: Philosciidae): vicariant speciation or adaptive shifts? Molecular Phylogenetics and Evolution 25: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Romero, A., 2009. Cave biology: life in darkness. Cambridge University Press, New York.

    Book  Google Scholar 

  • Romero, A. & S. M. Green, 2005. The end of regressive evolution: examining and interpreting the evidence from cave fishes. Journal of Fish Biology 67: 3–32.

    Article  Google Scholar 

  • Romero, A. & K. M. Paulson, 2001. It’s a wonderful hypogean life: a guide to the troglomorphic fishes of the world. Environmental Biology of Fishes 62: 13–41.

    Article  Google Scholar 

  • Rouch, R. & D. L. Danielopol, 1987. L’origine de la faune aquatique souterraine, entre le paradigme du refuge et le modèle de la colonisation active. Stygologia 3: 345–372.

    Google Scholar 

  • Roxo, F. F., L. E. Ochoa, M. H. Sabaj, N. K. Lujan, R. Covain, G. S. Silva, et al., 2019. Phylogenomic reappraisal of the Neotropical catfish family Loricariidae (Teleostei: Siluriformes) using ultraconserved elements. Molecular Phylogenetics and Evolution 135: 148–165.

    Article  PubMed  Google Scholar 

  • Sbordoni, V., 1982. Advances in speciation of cave animals. Progress in Clinical and Biological Research 96: 219.

    CAS  PubMed  Google Scholar 

  • Schemmel, C., 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober-und unterirdisch lebender Astyanax-Formen. Zeitschrift für Morphologie der Tiere 61: 255–316.

    Article  Google Scholar 

  • Soares, D. & M. L. Niemiller, 2013. Sensory adaptations of fishes to subterranean environments. BioScience 63: 274–283.

    Article  Google Scholar 

  • Strecker, U., L. Bernatchez & H. Wilkens, 2003. Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Molecular Ecology 12: 699–710.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobler, M., I. Schlupp, K. U. Heubel, R. Riesch, F. J. G. De León, O. Giere & M. Plath, 2006. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10: 577–585.

    Article  CAS  PubMed  Google Scholar 

  • Trajano, E. & M. E. Bichuette, 2007. Population ecology of cave armoured catfish, Ancistrus cryptophthalmus Reis 1987, from central Brazil (Siluriformes: Loricariidae). Ecology of Freshwater Fish 16: 105–115.

    Article  Google Scholar 

  • Trajano, E. & M. E. Bichuette, 2010. Subterranean fishes of Brazil. In Trajano, E. & M. E. Bichuette (eds), The Biology of Subterranean Fishes. Science. CRC Press, Boca Raton: 331–354.

    Chapter  Google Scholar 

  • Wilkens, H., 1988. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces). In Hecht, M. K. & B. Wallace (eds), Evolutionary Biology. Springer, Boston: 271–367.

    Chapter  Google Scholar 

  • Wilkens, H., 2010. Genes, modules and the evolution of cave fish. Heredity 105: 413.

    Article  CAS  PubMed  Google Scholar 

  • Wilkens, H. & U. Strecker, 2003. Convergent evolution of the cavefish Astyanax (Characidae, Teleostei): genetic evidence from reduced eye-size andpigmentation. Biological Journal of the Linnean Society 80: 545–554.

    Article  Google Scholar 

  • Yamamoto, Y., M. S. Byerly, W. R. Jackman & W. R. Jeffery, 2009. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Developmental Biology 330: 200–211.

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa, M., Y. Yamamoto, K. E. O’Quin & W. R. Jeffery, 2012. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biology 10: 108.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank V. Perini for initial developments on the mitogenome assembly, Dr. Jonathan Armbruster, and an anonymous reviewer for their suggestions on our manuscript. The present study was funded by Brazilian funding agencies Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) (E-26/202.780/2018), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa de Minas Gerais (FAPEMIG), Fundo de Incentivo à Pesquisa da Pontifícia Universidade Católica de Minas Gerais (FIP PUC Minas), and CNPq fellowship (Conselho Nacional de Desenvolvimento Científico e Tecnológico; DCC: fellowship Grant 306155/2018-4; RLF: fellowship Grant 308334/2018-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cardoso Carvalho.

Ethics declarations

Conflict of interest

The authors declare that they have conflicts of interest.

Additional information

Handling editor: Christian Sturmbauer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, I.S., Prosdocimi, F., Schomaker-Bastos, A. et al. On the evolutionary origin of Neotropical cavefish Ancistrus cryptophthalmus (Siluriformes, Loricariidae) based on the mitogenome and genetic structure of cave and surface populations. Hydrobiologia 842, 157–171 (2019). https://doi.org/10.1007/s10750-019-04033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04033-y

Keywords

Navigation